Flag Foliations Functionals. the Hopf Hypothesi

نویسنده

  • Valery Marenich
چکیده

With the help of a new type of functionals we study manifolds diffeomorphic to S 2 × S 2 and establish, in particular, the Hopf conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Lessons from Quantum Field Theory Hopf Algebras and Spacetime Geometries

We discuss the prominence of Hopf algebras in recent progress in Quantum Field Theory. In particular, we will consider the Hopf algebra of renormalization, whose antipode turned out to be the key to a conceptual understanding of the subtraction procedure. We shall then describe several occurences of this, or closely related Hopf algebras, in other mathematical domains, such as foliations, Runge...

متن کامل

Nonuniformisable Foliations on Compact Complex Surfaces

We give a complete classification of holomorphic foliations on compact complex surfaces which are not uniformisable, i.e., for which universal coverings of the leaves do not glue together in a Hausdorff way. This leads to complex analogs of the Reeb component defined on certain Hopf surfaces and certain Kato surfaces. 2000 Math. Subj. Class. 32J15, 37F75, 57R30.

متن کامل

Hopf Algebras, Renormalization and Noncommutative Geometry

We explore the relation between the Hopf algebra associated to the renormalization of QFT and the Hopf algebra associated to the NCG computations of tranverse index theory for foliations.

متن کامل

Linking Numbers of Measured Foliations

We generalise the average asymptotic linking number of a pair of divergence-free vector fields on homology threespheres [1, 2, 14] by considering the linking of a divergence-free vector field on a manifold of arbitrary dimension with a codimension two foliation endowed with an invariant transverse measure. We prove that the average asymptotic linking number is given by an integral of Hopf type....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009